

The Requirements

Reliable and rapid measurement of oxygen for

- Determining reference values for other gas components, for example SO₂, NO, NH₃, NO₂,
- Optimizing combustion processes
- monitoring O₂ excess

Application Areas

- Power stations and cement plants
- Steel/iron, glass and aluminium production
- Refuse incineration plants
- Refineries, chemical and petro chemical industry
- Others e. g. pharmaceutic, paper, food, wood industry

The System

The ZIRKOR 302 Oxygen Analyzer is designed as a modular measuring system and is available in the following configurations:

■ ZIRKOR 302-P

Analyzer with measuring gas pump and integrated control unit

■ ZIRKOR 302-E

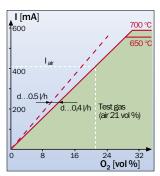
Analyzer with ejector and integrated control unit – operating with compressed air.

Evaluation Unit (Option)

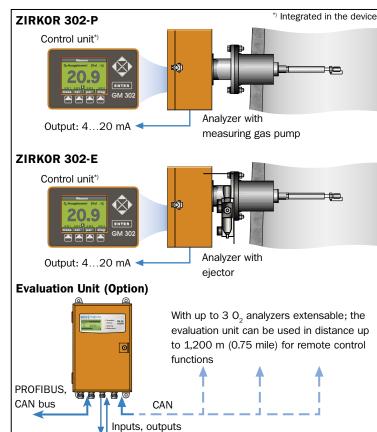
An Evaluation Unit is available for extending the ZIRKOR 302 system up to three $\rm O_2$ analyzers and can be used for remote control functions (e. g. in a control room) over a maximum distance of 1,200 m.

Installation On-Site

The $\rm O_2$ analyzer is mounted on a flange directly on the duct wall. Various bus connections to a higher level host computer are possible. The compact $\rm O_2$ analyzer is designed in line with current safety standards. As such, it does not represent a potential ignition source in the measured gas.


Key Featurs

- Modular design: up to 3 probes on 1 seperate evaluation unit
- Short response time for process control demands
- Applicable up to 1,400 °C (2,550 °F); higher on request
- No reference gas necessary
- All gas guiding parts are heated
- Auto. test/calibration function with ambient air (20,96 %); no specific test gases needed
- No restrike into the measuring gas possible


Measuring Principle

The over many years proven ZrO2 technology offers exact measurements in accordance with the current sensor measuring principle. This means that a linear sensor signal is achieved over the total measuring range with a fixed physical zero point.

Current sensor characteristic I ... current dep. on O₂ content d ... quantity of measured gas

The O_2 probe contains a ZrO₂ solid electrolyte tube closed on one side. A constant measured gas flow passes through the heated solid electrolytical cell. A DC voltage is applied to the cell electrodes at ≥650°C to determine the 0, concentration. The O₂ ion current in the electrolytes is then measured. This is derived from the linear correlation betw. 0, conc. and gas quantity passing through the cell per time constant.

Tech	nische Data
Meas	suring principle
Meas	suring range
Accu	racy
Resp	onse time
Appl	ication data
Meas	suring gas temperature
Meas	suring gas pressure
Ambi	ient temperature
Devi	ce data
Hous	sing construction
Prote	ection class
Powe	er supply
Dime	ensions (H x W x D)
Weig	ht
Moui	nting
Inter	faces and Signals
ZIRK	OR 302 analyzer
•	Interfaces
•	Signals

Evaluation unit (option) Interfaces

Signals

8 009 620/11-2004 • DIV03/SM • Printed in Germany (12-2004) • Subject to change without prior notice

ZIRKOR 302 zirconia dioxide, current sensor min. range: 0...10 vol %; max. range: 0...25 vol % \pm 0.2% (over the total measuring range) ≤ 15 s (with measuring gas sampling equipment of 1 m/3.3 ft) Stainless steel probe Inconel probe ceramic probe 700 °C (1,290 °F) 950 °C (1,740 °F) 1,400 °C (2,550 °F) 700...1,100 hPa (280...440 in WC) for standard device; other on request -20...+55 °C (-4...+130 °F) ZIRKOR 302 (pump) ZIRKOR 302-E (ejector) **Evaluation unit (option)** sheet steel housing sheet steel housing cast aluminium IP 65/NEMA 4X IP 65 or IP 67/NEMA 4X IP 65 or IP 67/NEMA 4X 115/230 V AC; \pm 10 %; 50/60 Hz; 310 VA power consumption; sampling/filter heating*): 500 VA 395 x 330 x 300 mm³ 330 x 395 x 182 mm³ 300 x 400 x 170 mm³ (15.5 x 13 x 11.8 in³) (13 x 15.5 x 7 in³) (11.8 x 15.8 x 6.7 in³) 27 kg (72 lb) 24 kg (64 lb) 4 kg (11 lb)

RS 232 service interface; CAN bus or RS 422;

optional: PROFIBUS DP, Modbus RTU, Ethernet, Interbus S

Flange tube 125 mm DN 80, PN6; ANSI B 16,5/DN 3" (150 lbs)

1 analog output: 0/4...20 mA, 500Ω (floating output);

option: 4 relay outputs 48 V AC/DC; 1 A; 60 W DC/30 W AC 4 analog outputs: 0/4...20 mA; 500Ω (electrically isolated

4 digital inputs: 24 V (built-in or peripheral in a cabinet used)

RS 232service interface; CAN bus to additional analyzers; optional: PROFIBUS

- \blacksquare 3 analog outputs : 0/4...20 mA; max. 500 Ω burden, electrically isolated; meas. value output
- 3 relay outputs: 48 V DC, 1 A, max. 30 W; 48 V AC, 1 A max. 60 VA; normally open contact
- 3 digital inputs: for floating distance contact (with 24 V)

*) Option

wall mounting

